The Global Burden of Foodborne Diseases
Taking Stock and Charting the Way Forward

WHO Consultation to Develop a Strategy to Estimate the Global Burden of Foodborne Diseases
25-27 September, 2006
Geneva, Switzerland

World Health Organization
Acknowledgement

The Department of Food Safety, Zoonoses and Foodborne Diseases (FOS) at the World Health Organization (WHO) wishes to express its sincere thanks to all those who contributed towards the success of this consultation.

First and foremost we wish to thank all participants for their valuable technical input and their collegiality during the meeting. We are particularly grateful to Mr. Martyn Kirk for superb chairing of the meeting, Dr Kathryn Doré for excellent rapporteuring, Ms. Jenny Murcott and Ms. Johanna Slotte for the first-rate organization of the consultation, and Dr. Sarah O'Brien for her valuable input to the report.

We also wish to express our sincere gratitude to the Centers for Disease Control and Prevention (CDC) for the generous financial contribution to the administrative arrangements of this Meeting.
Table of Contents

List of Acronyms ... 5
Definitions ... 6
Preamble .. 7
Executive Summary ... 8
1. Introduction .. 9
2. Consultation Objectives ... 9
3. Definitions and Scope of the Initiative .. 9
4. Methodological approaches and measures for foodborne disease burden estimation .. 10
 4.1 Methodological Approaches ... 10
 4.1.1 Discussion .. 10
 4.1.2 Recommendations for chapter 4.1 - Methodological approaches 14
 4.2 Etiologies to be included in the burden of disease assessment ... 15
 4.2.1 Discussion .. 15
 4.2.2 Recommendations for chapter 4.2 - Etiologies to be included 18
 4.3 Burden of disease measures to be used ... 18
 4.3.1 Discussion .. 18
 4.3.2 Recommendations for chapter 4.3 - Burden of disease measures to be used 20
5. Burden of Foodborne Disease Studies at country level ... 21
 5.1 Country protocols ... 21
 5.1.1 Discussion .. 21
 5.1.2 Recommendations for chapter 5.1 - Country protocols ... 22
 5.2 Consultation, training & communication ... 25
 5.2.1 Discussion .. 25
 5.2.2 Recommendations for chapter 5.2 – Consultation, training and communication 26
6. Strategic way forward .. 27
 6.1 Burden of disease strategy and time frame for action .. 27
 6.2 The Foodborne Disease Burden Epidemiology Reference Group (FERG) 29
7. Conclusions .. 30
 7.1 Outputs of the consultation .. 30
 7.2 Summary of Recommendations: .. 31
8. References ... 33
9. Attachments and Appendices .. 34
 Appendix 1: List of participants .. 34
 Appendix 2: Meeting agenda .. 41
List of Tables and Figures

Tables

Table 1: Chemicals for which more reliable quantitative information for foodborne disease burden may exist…………………………….………. 15

Table 2: A fully integrated approach to foodborne diseases combining syndromic and agent-specific clinical presentations (“evidence map”)… 17

Table 3: Table of recommendations………………………………………….….. 31

Figures

Figure 1: The process for estimating the incidence of foodborne gastroenteritis in a specific country ………………………………………….. 12

Figure 2: Neurocysticercosis, a preventable cause of epilepsy and its global distribution…………………………………………………………. 14

Figure 3: Foodborne trematodiasis caused by the liver fluke Opisthorchis viverrini…………………………………………………………. 24

Figure 4: Strategic framework for the execution of recommendations………… 28

Textboxes

Textbox 1 Global Burden of Disease Study……………………………………….. 13
Textbox 2 Methods for global burden assessment: echinococcosis………………. 18
Textbox 3 Our food, our health: Healthy diet and safe food in the Netherlands….. 20
Textbox 4 The Jordan Burden of Illness…………………………………………… 22
Textbox 5 International cooperation on FBD burden of illness studies: A case study in the AMRO Region……………………………………. 25
List of Acronyms

ADG Assistant Director-General
BOD Burden of Disease
CE Cystic echinococcosis
CHERG Child Health Epidemiology Reference Group
DALY Disability-Adjusted Life Year
FERG Foodborne disease burden Epidemiology Reference Group
FBD Foodborne diseases
GBD Global Burden of Diseases
GSS Global Salm-Surv
FOS Department of Food Safety, Zoonoses and Foodborne Diseases
MERMalaria Monitoring and Evaluation Reference Group
NSAGI National Studies of Acute Gastroenteritis
OIE Organisation for Animal Health
PAHO Pan American Health Organization
SDE Cluster of Sustainable Development and Environmental Health
WHO World Health Organization
WHS World Health Survey
YLL Years of Life Lost (to premature death)
YLD Years Lived with Disability
Definitions

Foodborne Diseases
Foodborne diseases (FBD) can be defined as diseases commonly transmitted through food. FBD comprise a broad group of illnesses caused by microbial pathogens, parasites, chemical contaminants and bio-toxins.

Burden
The burden of disease can be defined as the incidence and prevalence of morbidity, disability, and mortality associated with acute and chronic manifestations of diseases.

DALYs (Disability-Adjusted Life Years)
The DALY measure combines the years of life lost due to premature death (YLL) and the years lived with disability (YLD) for varying degrees of severity, making time itself the common metric for death and disability. One DALY is a health gap measure, equating to one year of healthy life lost.
Preamble

Joint Statement by participants
of the WHO Consultation to Develop a Strategy to
Estimate the Global Burden of Foodborne Diseases
September 25-27, 2006
Geneva, Switzerland

Recognizing that foodborne diseases are an important cause of illness and death worldwide, the World Health Assembly in 2000 identified prevention and control of foodborne diseases as a public health priority. To allocate resources for appropriate foodborne disease control efforts most effectively, precise information on burden of disease is needed. Although Burden of Foodborne Diseases estimates have recently been established in several countries, global estimates and additional national estimates are needed to inform public health policy.

The World Health Organization (WHO), through the Global Burden of Disease initiative, has developed a rigorous approach for burden of disease estimation from numerous causes and risk factors but global estimates are needed for the human health burden of pathogens and chemicals transmitted through food. WHO leadership is essential to ensure a coordinated approach in the derivation of Burden of Foodborne Disease estimates, and the participants of this consultation welcome the launch of such initiative by the WHO Department of Food Safety, Zoonoses and Foodborne Diseases (FOS). In particular, given the complex and multi-disciplinary nature of this issue and wide variety of stakeholders involved, FOS with its established leadership in food safety, is in an ideal position to provide the essential guidance.

Therefore, key recommendations of the consultation include:

- WHO Burden of Disease activities should be extended to encompass a broad spectrum of diseases commonly transmitted through food and from a variety of causes, including chemicals.
- The WHO Department of Food Safety, Zoonoses and Foodborne Diseases should provide leadership in the coordination of the efforts to estimate the Burden of Foodborne Diseases.
- WHO should establish a technical reference group to provide expert advice and consultation to WHO concerning the derivation of Burden of Foodborne Disease estimates.
- WHO member states are urged to undertake public health surveillance for diseases commonly transmitted through food and conduct studies aimed at determining burden of disease estimates.
Executive Summary

Foodborne diseases (FBD) encompass a wide spectrum of illnesses and are a growing public health problem worldwide. Reliable epidemiological estimates on the burden of these diseases are important in order to assess the impact of food safety measures and advise policy makers on the cost-effective use of resources. Although several international initiatives are under way, to date no precise and consistent global information exists.

The department of Food Safety, Zoonoses and Foodborne Diseases (FOS) at WHO therefore launched an initiative to estimate the Global Burden of Foodborne Diseases from all major causes, including chemicals and zoonoses, at an international consultation. This was held from 25-27 September 2006 in Geneva and attended by over 50 experts from around the world. The objectives of the meeting were to:

1. launch an appeal for wider collaboration with a detailed plan of action and timeframe,
2. develop a strategic framework for burden of disease estimation that involves all relevant partners, and
3. propose elements of a standard protocol for conducting burden of illness studies in countries to obtain estimates.

The meeting included a mixture of presentations by experts in the field (see website for abstracts and presentations), group work to address the objectives and plenary discussions to agree on the outcomes of the consultation.

The result of the consultation was a draft strategic framework for the assessment of Burden of Foodborne Diseases, which included: (a) the outline of an evidence map for assimilating existing information on the burden of illness [along themes of (i) acute infectious diseases, (ii) chronic manifestations of infectious diseases and (iii) acute and chronic non-infectious illness (Table 2)] and (b) a time frame outlining the individual strategic activities in relation to the evidence framework (Figure 4). Relevant international collaborators were identified and will be approached by WHO. Meeting participants agreed that it was desirable to use summary measures, such as the disability-adjusted life year (DALY) for any estimation of global burden. In addition, the participants agreed on the contents of a standard protocol for FBD burden studies at country level including infectious and chemical causes.

In order to complete the strategic and technical framework, participants charged WHO with the establishment of a Foodborne Disease Burden Epidemiology Reference Group (FERG) and proposed the relevant skill mix required for this group. A number of funding agencies was identified that might be approached by WHO to enable the execution of this work. The consultation concluded with the drafting of a Joint Statement of Support (see Preamble) for the initiative.
1. Introduction

The meeting was opened by Dr. David Heymann, Acting Assistant Director-General (ADG) of the Communicable Diseases Cluster at WHO on behalf of Mrs Susanne Weber-Mosdorf, ADG of the Sustainable Development and Environmental Health (SDE) Cluster.

Mr Martyn Kirk from the Australian Government Department of Health and Ageing and Ms Kathryn Doré of the Public Health Agency of Canada were elected as the meeting Chair and Rapporteur, respectively.

Dr. Claudia Stein welcomed the group on behalf of the WHO Department of Food Safety, Zoonoses and Foodborne Diseases (FOS) and introduced the meeting agenda (Appendix 2).

2. Consultation Objectives

For several years WHO has been encouraging Member States to quantify the national burden and causes of foodborne disease \(^a\)^. Although several foodborne disease burden estimates now exist\(^2, 3, 4, 5\), they are mainly from developed countries. In large parts of the world the data required to underpin such estimates are completely lacking.

The broad goal of this WHO consultation was, therefore, to develop a strategy for WHO towards improved estimates of the Global Burden of Foodborne Diseases from all major causes. A multi-disciplinary group of national and international experts (Appendix 1) was convened in order to discuss and review existing epidemiological approaches in this area, identify gaps, consider options for addressing these gaps and provide the overall framework for WHO to proceed towards a global estimate of the Burden of Foodborne Disease. The detailed purpose of the meeting was as follows:

- To launch an appeal for wider collaboration with a detailed plan of action and timeframe,
- To develop a strategic framework for burden of disease estimation that involves all relevant partners, and
- To propose elements of a standard protocol for conducting burden of illness studies in countries to obtain estimates.

3. Definitions and Scope of the Initiative

Foodborne diseases (FBD) can be defined as those associated with the ingestion of contaminated food. The burden of disease (BOD) can be defined as the incidence, prevalence of morbidity, disability, and mortality associated with acute and chronic manifestations of foodborne diseases.

\(^a\) In 2002, WHO convened a Consultation on 'Methods on Foodborne Disease Surveillance in Selected Sites' held from 18-21 March in Leipzig, Germany. The Consultation categorized disease surveillance systems according to their capacity to generate information on foodborne diseases and developed a general work plan for conducting studies to identify the burden of foodborne diseases in selected countries. As a result, such studies have been initiated in Jordan, Viet Nam, Cuba and Slovenia.
In terms of scope, the Burden of Foodborne Disease initiative should focus initially on microbial, parasitic, and chemical (including bio-toxins) contamination of food. Subsequently other aspects such as the burden associated with an absence of essential elements in the diet (e.g. folic acid leading to neural tube defects), food allergies, related issues such as avian influenza, Bovine Spongiform Encephalopathy, and infections transmitted through direct contact with food animals might be considered.

Meeting participants recognised that many diseases transmitted by the fecal-oral route were transmitted via contaminated water, food, and environments, as well as infected persons and animals. For clarity, the consultation unanimously recommended that “Global Burden of Foodborne Diseases” be renamed “Global Burden of Diseases caused by agents commonly transmitted through Food”.

4. Methodological approaches and measures for foodborne disease burden estimation

4.1 Methodological Approaches

4.1.1 Discussion

Several options were discussed:

a) Syndromic Approach

A starting point for determining the global burden of illnesses or conditions caused by pathogens/toxins commonly transmitted by food might be the generation of a list organized by principle disease syndromes (Table 2). This syndromic approach is a relatively simple and low cost initial step in gathering reliable information on the burden of disease associated with syndromes such as gastroenteritis. For example, all countries that collect data on diarrhoeal disease can contribute data. The syndromic method, however, may be less suitable for specific disease patterns (e.g. chemicals and cancer). Moreover, the low specificity of syndromic information limits its usefulness for foodborne illnesses. Complementary approaches are needed to define better the burden of diarrhoeal illness associated specifically with foodborne transmission.

b) Etiologic agent and risk factor approach

The starting point for several countries has been to use data on pathogens causing laboratory-confirmed diarrhoeal disease and to partition these data by most probable route(s) of transmission. The information generated is then extrapolated to all diarrhoeal disease and adjusted for underreporting. Compared to the syndromic approach, this method results in more specific estimates of foodborne illness. Alternatively, the total burden of illness for a specific pathogen, such as *Campylobacter* can be estimated and the proportion of relevant clinical presentations, such as gastroenteritis, Guillain-Barré syndrome, reactive arthritis and irritable bowel calculated.
Better methods are needed to separate pathogens causing diarrhoea and other symptomatic illnesses from those that individuals excrete asymptomatically, hence do not cause actual disease burden. Experts advising WHO's Child Health Epidemiology Reference Group (CHERG) will track asymptomatic infections weekly and use stool specimens and serology for best antigen detection. Where diseases have a high degree of endemicity, there can be relatively long periods of asymptomatic shedding. This may lead to an overestimate of infection that will need to be adjusted in any resulting model.

The approach to chemical contamination of food uses a different risk paradigm than microbiological contamination. Unlike in microbiological contaminants where one tends to start with the health effect and extrapolates back to the putative infectious causes, the starting point in chemical is often the dose response. Health effects of chemical exposure can be extrapolated by knowing the dose response relationship and the level of contamination of food. Much of the foodborne chemical information currently available is from developed countries which have a comparatively low-burden of acute chemical related diseases. However, acute chemical poisoning is a serious cause of morbidity and mortality in developing countries; this may warrant the collation and estimation of such data in these settings particularly.

The expert group agreed that both syndromic and risk factor information is needed to answer questions about food safety and inform intervention measures. However, there was some disagreement about whether pathogen-specific rates are of such high importance for interventions, particularly since there is a considerable proportion of illness for which pathogens are unknown. Settings where foods are prepared or become contaminated (e.g. home, restaurant, street vendors, primary production) are also of interest in guiding interventions, but it was noted that in reality, epidemiological studies rarely separate different sources of exposure to contaminated foods. In summary, it was clear that the approach taken in many developed countries for food-based chemicals used exposure to estimate disease, while microbial risks were estimated by attributing a proportion of disease to a given mode of transmission.

c) Attribution methods
A variety of methods has been used to ascertain the proportion illness caused by foodborne agents using a syndromic case definition of gastrointestinal disease and/or pathogen specific causes likely to be attributable to food consumption. Investigators have used a combination of the following sources to assess the modes of transmission of foodborne agents:

- Systematic reviews;
- Routine surveillance data with enhanced laboratory capacity/molecular techniques, combined with systematic surveillance of foods and food-producing animals;
- Population attributable risks from analytical studies (e.g. case control studies);
- Intervention studies where disease reductions have been observed from improved food safety;

5 The CHERG was first convened by WHO in 2002 with funding from the Bill & Melinda Gates Foundation. It is composed of leading external and WHO-internal experts to complete and publish epidemiologic reviews for each of the major causes of mortality, morbidity and disability in children under 5 years. To date CHERG has successfully published on all major causes, notably with an acclaimed Lancet series on child mortality in 2005.
- Surveillance of outbreaks comparing reported modes of transmission for different agents;
- Delphi method (expert opinion).

For illnesses of unknown etiology, a protocol is needed to estimate of the proportion that is foodborne. For example, in some national studies the proportion of gastroenteritis transmitted by all known pathogens is assumed to be the same for gastroenteritis of unknown etiology to derive an estimate (Figure 1). This issue is again discussed in section 5.1.2.

Figure 1: The process for estimating the incidence of foodborne gastroenteritis in a specific country

In developing regional or global estimates of disease, inter-country variations in the proportion of illnesses attributed to food must be considered in the attribution model. This clearly depends on many factors including the dominant causes of foodborne illness and dietary habits in those settings. There was some debate regarding the validity of applying the proportion of disease attributed to food for developed countries to developing countries. It is possible that risk profiles may be similar in developed countries and developing nations that are making major improvements in their food safety supply systems. Alternatively, there may be different pathogens contaminating food and at much higher levels, which will affect the incidence of foodborne disease in developing countries. This could be further compounded by the fact that food-based risks in many developing countries are different due to local food preferences and production methods. Moreover, differences in health status, co-morbidity and other vulnerabilities between countries, including malnutrition, are likely to affect foodborne disease incidence and their resulting complications.

d) Combined methods for burden of disease estimation

The Global Burden of Disease (GBD) study (see Textbox 1) examines disease and mortality burden from over 130 different causes using a combination of different approaches, including a comparative risk assessment framework which assesses the contribution of various risk factors to burden.

Textbox 1 - Global Burden of Disease Study

Health policies should be based on accurate and meaningful health information. Much of the information collated, however, cannot be directly translated into policy. Health data from routine statistics or epidemiological studies are often fragmented, frequently concentrate on fatal health outcomes, and may only be partially available. Studies which investigate particular conditions may exaggerate claims on mortality. This is largely a reflection of co-morbidity where several co-existing pathologies contribute to and compete for the cause of death. Moreover, traditional statistics use a variety of different measures, which do not permit direct comparisons of the cost-effectiveness of different interventions.

The Global Burden of Disease (GBD) Study approach - which was adopted by WHO for its reporting on health information in the late 1990’s - addressed these problems and proposed a single metric, the Disability Adjusted Life Year (DALY). DALYs express the years of life lost to premature death (YLL) and the years lived with disability (YLD) for varying degrees of severity, making time itself the common metric for death and disability. One DALY is therefore a health gap measure, equating to one year of healthy life lost. DALYs are internally consistent and disaggregate co-morbidity, hence de-coupling epidemiological estimates from advocacy. Disadvantages of the DALY approach include the need for strong value judgments on disability and age, thus placing emphasis on death and morbidity in young adulthood.

Burden of disease studies should not produce a plethora of new research but instead capitalise on existing information and translate it into a single measure. Burden of Disease studies include elements of disease modelling, risk assessment and burden projections; the latter inform policy makers where to target preventive strategies and what to expect in terms of future disease burden. Missing elements in the traditional GBD approach are the downstream effects on trade, agriculture and social costs. Using the DALY metric, however, these can be developed and should be incorporated in the global burden study of diseases commonly transmitted through food.

One of the strengths of the GBD approach is that it permits the estimation of disability associated with disease, particularly where mortality may be low but disabling long-term sequelae arise. One such example in the area of foodborne diseases would be the incidence of epilepsy as a result of trematode infection leading to neurocysticercosis (Figure 2).

Figure 2: Neurocysticercosis, a preventable cause of epilepsy and its global distribution

Source: Arve Lee Willingham, Royal Veterinary and Agricultural University, Frederiksberg, Denmark.

While the GBD did not specifically examine risks associated with unsafe food it assessed (in its second round in the year 2000) the global burden of unsafe water and poor sanitation using nationally representative household-level exposure data on water quality and hygiene. This burden was calculated using estimated disease reductions from multiple community intervention studies. The risk assessment thus relied on the impact of interventions rather than characterisation of the burden of disease per se.

4.1.2 Recommendations for chapter 4.1 - Methodological approaches

Based on the discussions above, the participants agreed that a combination of syndromic and etiologic agent-specific approaches is required to best estimate the Burden of Foodborne Disease.

Recommendation I

WHO should **combine syndromic and etiologic agent-specific approaches** to estimate the global burden of foodborne diseases. This needs to be followed by an attribution of the **proportion of DALYs that is likely to be foodborne**.

One way to proceed would be to start with overall enteric disease burden studies adjusted for underreporting, then estimate pathogen- and chemical-specific burden and subsequently attribute the burden to foodborne, waterborne, person-to-person and animal-to-person modes of transmission.
In doing so it was recommended to primarily **focus on**:

- diseases which have a known high burden or are likely to have significant burden, and
- on pathogens and chemicals that were most likely to contaminate food as well as the degree of preventability of contamination.

4.2 Etiologies to be included in the burden of disease assessment

4.2.1 Discussion

Participants discussed which etiologic agents should receive the focus when applying the combined approach outlined above. It was recognized that enteric pathogens would play a significant role in foodborne disease.

Several chemicals were examined but it remained unclear how to rank them for importance, particularly for those causing chronic disease; this calls for further fundamental work. It was noted that there is potentially good burden of disease information for a number of agents. Table 1 may serve as a preliminary discussion table for further and more detailed exploration.

Meeting participants noted that the burden of disease from acute chemical poisoning due to food was potentially high in developing countries, but data quality and availability might be very variable. The burden of disease due to food allergies will also require some attention.

Table 1: Chemicals for which more reliable quantitative information on foodborne disease burden may exist

<table>
<thead>
<tr>
<th>Chemical (As)</th>
<th>Associated disease endpoint (type of study showing the association)</th>
<th>Quantitative information</th>
<th>Assumptions to estimate foodborne burden of disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Skin cancer and lesions (cohort, cross sectional, and ecological studies of As in drinking water)</td>
<td>• Dose response information from several countries including Taiwan, India, Bangladesh, Argentina, Chile, and USA</td>
<td>• Inorganic arsenic in drinking water is the same as inorganic arsenic in food</td>
</tr>
<tr>
<td></td>
<td>• Bladder cancer (ecological, case-control, cohort studies of As in drinking water)</td>
<td>• The amount of arsenic consumed in food has been reported for a number of countries including Australia, Brazil, Canada, Croatia, Japan, Spain, UK, and USA</td>
<td>• The contribution of arsenic from water used to prepare food can be estimated</td>
</tr>
<tr>
<td></td>
<td>• Lung cancer (ecological, case-control, cohort studies of As in drinking water)</td>
<td>• Mean total arsenic intake from food and beverages is reported to range from 15 µg/day for Canadian 1-4 year olds to 291 µg/day for adults in the Basque region of Spain</td>
<td>• The amount of inorganic arsenic in food can be estimated</td>
</tr>
<tr>
<td></td>
<td>• Diabetes (cross sectional, case-control studies of As in drinking water)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cardiovascular disease (cohort, case-control, cross sectional, and ecological studies of As in drinking water)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>Associated disease endpoint (type of study showing the association)</td>
<td>Quantitative information</td>
<td>Assumptions to estimate foodborne burden of disease</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>• Itai-itai disease (cross-sectional, ecological, and cohort studies)</td>
<td>• Increase in abnormal urinary variables associated with Cd content in food; increase in total mortality assoc. with Cd content in rice; increase in mortality from renal disease associated with Cd content in rice; increase in itai-itai disease associated with Cd content in rice (studies all conducted in Japan)</td>
<td>• Urinary variables may be used as indicators of disease
• The increase in total mortality and the increase in mortality from renal disease may reflect an increased risk from cadmium</td>
</tr>
<tr>
<td></td>
<td>• Cadmium concentrations in foods have been reported for a number of countries including Denmark, Finland, Japan, The Netherlands, Sweden, UK, USA; daily dietary intake from food known for Belgium, Finland, New Zealand, Sweden, UK, and USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>• Excess mental retardation (cross-sectional, cohort studies) • Cardiovascular disease (cohort, case-control, cross-sectional studies) • Anemia (ecological, cross-sectional)</td>
<td>• Dose response association of blood lead levels with blood pressure and neurologic effects (Numerous studies in several countries)</td>
<td>• The contribution of lead in food to the lead levels in blood can be estimated</td>
</tr>
<tr>
<td>Methyl mercury</td>
<td>• Neurological effects (cohort studies) • Blood pressure (cohort) • Heart rate variability (cohort)</td>
<td>• Dose response association of mercury in cord blood and maternal hair with effects on neurological tests, blood pressure, and heart rate variability in children (Studies have been conducted in the Faroe Islands, New Zealand, and Seychelles)</td>
<td>• Estimates of the amount of methyl mercury in fish may be based on biologic indices of mercury exposure (e.g. blood and hair)</td>
</tr>
</tbody>
</table>

Source: Herman Gibb, Sciences International, Inc., Alexandria, VA, USA.

Participants discussed which specific clinical (syndromic) presentations and agent-specific causes should be included in a framework for foodborne disease estimation and charged a small subgroup to draft the results (Table 2). The framework respects the following considerations:

- An integration of both microbial and chemical causes of foodborne disease;
- Diseases are included on the basis of their relative importance (i.e. severity and incidence), the strength of existing evidence in developed and developing countries and the availability of burden of illness data at country and global levels;
- A description of acute as well as chronic health effects. It is important to consider the chronic sequelae as otherwise the DALYs due to contaminated food might be underestimated.
Table 2: A fully integrated approach to foodborne diseases combining syndromic and agent-specific clinical presentations (“evidence map”)

<table>
<thead>
<tr>
<th>Category</th>
<th>Clinical syndromes</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious disease</td>
<td>• Chronic sequelae</td>
<td>• Reactive arthritis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Salmonella sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Campylobacter sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Yersinia sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Guillain Barré Syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Campylobacter sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Irritable Bowel Syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Campylobacter sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Salmonella sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cryptosporidium sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Giardia sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Epilepsy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Taenia solium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Retinopathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Toxoplasma gondii</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Renal failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Shiga-toxin producing Escherichia coli (STEC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Helicobacter pylori</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Opisthorchis viverrini</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multi-organ system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trichinella sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mycobacterium bovis</td>
</tr>
<tr>
<td></td>
<td>• Acute</td>
<td>• Gastroenteritis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Campylobacter sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Non-typhoidal Salmonella sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cryptosporidium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Giardia sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Shigella sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Norovirus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bacterial toxins</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Yersinia sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cyclospora sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Entero-pathogenic E. coli (EPEC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• STEC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Marine biotoxins (e.g. Diarrhetic Shellfish Poisoning)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Meningitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Listeria monocytogenes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Salmonella sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Septicaemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Brucella sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Salmonella (inc typhoid) sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Listeria monocytogenes</td>
</tr>
<tr>
<td></td>
<td>• Acute Neurological symptoms</td>
<td>• Clostridium botulinum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Marine biotoxins</td>
</tr>
<tr>
<td></td>
<td>• Perinatal loss</td>
<td>• Listeria monocytogenes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Toxoplasma gondii</td>
</tr>
<tr>
<td></td>
<td>• Acute Hepatitis</td>
<td>• Hepatitis A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hepatitis E</td>
</tr>
<tr>
<td>Chemicals</td>
<td>• Acute</td>
<td>• Gastroenteritis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Organophosphates</td>
</tr>
<tr>
<td></td>
<td>• Chronic</td>
<td>• Neurodevelopment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lead</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Methylmercury</td>
</tr>
<tr>
<td></td>
<td>• Cancer</td>
<td>• Aflatoxin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Arsenic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Acrylamide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dioxins</td>
</tr>
<tr>
<td></td>
<td>• Renal disease</td>
<td>• Cadmium</td>
</tr>
</tbody>
</table>
4.2.2 Recommendations for chapter 4.2 - Etiologies to be included

Based on the discussions above and the results outlined in Table 2, the participants made the following recommendation:

Recommendation II
WHO should use the fully-integrated framework outlining syndromes and causative agents shown in Table 2 as a basis for the global burden of foodborne diseases estimation.

In addition, the participants proposed that:

Recommendation III
WHO should make special efforts to estimate the global burden of foodborne diseases due to chemical and parasitic causes.

4.3 Burden of disease measures to be used

4.3.1 Discussion

The impact of each etiologic agent can be expressed in terms of disability-adjusted life years (DALYs). This metric conforms to existing WHO protocols developed for the GBD initiative (Textbox 1) and is increasingly used in the description of potentially foodborne diseases, including those caused by parasites (Textbox 2).

Textbox 2 - Methods for global burden assessment: echinococcosis

Cystic echinococcosis (CE) is a zoonotic disease caused by the larval stages of the dog tapeworm *Echinococcus granulosus*. Risk factor analysis has suggested as much as 30% of CE is transmitted through food by contamination with parasite eggs. To estimate the global burden of CE, a variety of sources of data to estimate human incidence and animal prevalence were used by investigators of the University of Zurich. These included OIE data, official government reports, detailed multi-lingual literature searches and published reports of detailed case studies for some locations. In addition, modelling techniques were utilized to estimate missing data.

CE is primarily a space occupying disease of the liver. Consequently, disability weights for liver cancer were used based on disease free liver cancer, pre-terminal liver cancer, terminal liver cancer and death. The proportion of cases of CE assigned to each category was based on a literature survey of several series of cases and their clinical outcome following surgical intervention. Likewise age weighting was also based on literature reports. Stochastic techniques were used to model this uncertainty and hence overall DALY and financial estimates were calculated based on a median and 95% credible intervals.

The small number of case finding reports confirmed that underreporting is in the region of 75%. The global burden of CE was estimated to be approximately 1 million DALYs (95%CI 860,000-1,175,000) assuming underreporting of cases, with perhaps 200,000 new cases of CE each year. The financial burden of disease in purchasing power parity estimates is approximately $4.1 billion per annum of which 46% is associated with human treatment and morbidity and 54% is animal health costs.

1. Torgerson PR, Budke CM. Epidemiology and Modelling Group, WHO Collaborating Centre for Parasitic Zoonoses, Institute of Parasitology, Faculty of Medicine and VetSuisse Faculty, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland.

However, relying exclusively on DALYs can make some diseases less visible. Meeting participants expressed concern that some measures of social burden are not well captured by DALYs, such as costs associated with diminished production and trade of infected food-producing animals. Other drawbacks of the DALY approach include subjective value judgements made on disability weights and age-weighting, as well as the fact that traditionally the burden of stillbirths is not considered in the derivation of DALYs (which is relevant to the burden of toxoplasmosis and listeriosis).

Resolving how morbidity and mortality that is foodborne can be distinguished from that associated with unsafe water and sanitation remains a challenge. For example, the number of DALYs resulting from water and sanitation are close to the total worldwide burden calculated for diarrhoeal disease. Clearly, a proportion of these diarrhoeal cases are attributable to unsafe food but the exact burden remains to be quantified and attempts will need to be made to arrive at a proportional attribution to food and water. The group noted that there had been many positive outcomes of the WHO International Collaboration on Enteric Burden of Illness Studies where countries had compared and contrasted findings for national studies. Specific partnerships thus far suggest enhanced linkages between the foodborne disease burden initiative and the GBD efforts. One key area for future collaboration is the global burden of unsafe water and sanitation area.

Studies reporting burden of disease estimates focusing on mortality give underestimates since, for example, case fatality for some foodborne illnesses (including rotavirus infection) has declined in many countries (due to interventions such as oral rehydration and introduction of vaccines), while morbidity remains high.

The World Health Surveys (WHS) were discussed as a potential source of Burden of Foodborne Diseases information. However, the WHS collected only data on the incidence of diarrhoeal disease in children with an estimate of symptom duration.

A study of diet and health in the Netherlands (Textbox 3) compared chemical and microbial foodborne disease using DALY estimates. The study found that contamination of food due to chemicals and microorganisms caused similar burden of disease. The study highlighted how the burden of acute disease can be minimised in countries with extensive regulation of food safety. The consultation agreed that WHO should encourage member countries to conduct similar assessments.

Textbox 3

The International Collaboration on Enteric Burden of Illness Studies was formed in 2004 under the auspices of the World Health Organization. The group currently has participants from in excess of 30 countries. The main aims of the collaboration are to: (a) foster communication between people researching the burden of enteric diseases, (b) share study designs and results of studies; (c) provide advice to countries wishing to conduct burden of illness studies; and (d) contribute to global foodborne disease burden estimates. The collaboration has largely concentrated on the burden of disease that is likely to be microbiological in nature (see also Reference 3).
Textbox 3 - Our food, our health: Healthy diet and safe food in the Netherlands

This nationwide study assessed the health impact and safety of the diet of the Dutch population by examining nutritional aspects (including unfavourable dietary intake) and dietary composition as well as the effect of microbial and chemical contamination of food. To provide a direct comparison of these different factors health impact was expressed in Disability Adjusted Life Years (DALYs) per annum.

Using largely the comparative risk assessment approach, the study examined both acute and chronic health effects, including (a) the effect of the consumption of saturated fats, trans-fatty acids, fish, fruit and vegetables on the incidence of cardiovascular diseases and cancer; (b) the incidence of gastroenteritis (including its sequelae and mortality) due to microbial foodborne contamination by known pathogens; (c) the effects of main chemical constituents and contaminants, including allergens.

The overall conclusion was that although the Dutch diet is safer than ever the composition of the Dutch diet is still far from the recommended. Obesity as a result of an unfavourable diet was found to be the greatest threat causing 215,000 DALYs to be lost every year and an average reduction in life expectancy of 1.2 years in people over the age of 40 years. Yet, foodborne infections remained a persistent problem with 4.5 million cases of gastroenteritis each year resulting in approximately 1,000-4,000 DALYs lost. This is comparable to the health loss due to AIDS or bacterial meningitis. A similar result was recorded for allergies caused by chemical contaminants resulting in approximately 1,000 DALYs lost every year.

The authors concluded that a reduction of overweight and obesity and the promotion of a healthy dietary composition should be a public health priority in the Netherlands. They also advocate better risk assessment methods and risk communication with consumers.

1. FX Rolaf van Leeuwen, National Institute for Public Health and the Environment, Bilthoven, The Netherlands. The study report can be accessed online under: www.rivm.nl/en

4.3.2 Recommendations for chapter 4.3 - Burden of disease measures to be used

Participants advised WHO that any strategy to assess this disease burden should reflect the internally consistent GBD approach which applies the DALY, a metric that is generally accepted, widely used by WHO and helpful for cost-effectiveness analyses. Participants also suggested to follow the GBD approach in describing the uncertainty inherent to the estimates.

Recommendation IV

WHO should **employ the internally consistent Global Burden of Disease (GBD) methodology** in the assessment of the global burden of foodborne diseases. The impact of each syndrome and etiologic agent should be **expressed in terms of Disability Adjusted Life Years (DALY)** where possible.
5. Burden of Foodborne Disease Studies at country level

5.1 Country protocols

5.1.1 Discussion

Country protocols for conducting foodborne disease burden studies may differ for developed and developing countries because of different capacities. Moreover, the type of disease specific pathogens may vary due to different laboratory capacity, and differences in the prevalence of etiological agents.

Existing protocols for assessing the burden of illness could be adapted for use in this global burden initiative. These protocols have been developed to determine the Burden of Foodborne Disease and the burden associated with a wide range of specific pathogens and food types. They include active, integrated surveillance systems (i.e. FoodNet, OzFoodNet), population studies (cross-sectional/cohort surveys), and laboratory surveys examining a wide range of etiologic agents as well as targeted risk factor studies (e.g. case-control studies). Examples of such protocols include:

- Netherlands study (both biological and chemical protocols) (Textbox 3)
- Jordan and Cuba burden of illness studies (Textbox 4)
- UK Infectious Intestinal Diseases Study
- CDC Biomonitoring and EPA Integrated Risk Information System (IRIS)
- Canada’s National Studies of Acute Gastrointestinal Illness (NSAGI)
- Australia’s OzFoodNet
- US FoodNet and Foodborne Disease estimates

These protocols can be modified according to national/regional capacities to assist countries in establishing baselines on burden of enteric illness and on specific etiologies. The consultation recognised that the study conducted in Jordan on limited pathogens may represent a good model of simplified assessment of burden that could be used in countries with limited surveillance data (Textbox 4).

Recommendation V

For clarity and consistency, point estimates of the burden together with uncertainty distributions should be used in technical publications, while a “single most likely value” is suggested for non-technical audiences.

d www.epa.gov/iris
Textbox 4 - The Jordan Burden of Illness Study

As part of WHO strategy to reduce the burden of foodborne diseases globally, Jordan was selected as the first sentinel site in the Eastern Mediterranean Region to study the burden of disease due to *Salmonella* (including *S. Typhi*), *Shigella*, and *Brucella* infections.

Burden of disease was estimated using nationwide population and laboratory surveys along with a validation study to approximate internal validity. Estimates were calculated by determining two proportions: (1) the proportion of ill persons >1 year of age in the Jordanian population who sought care and (2) the proportion of ill persons >1 year of age who sought care and submitted a clinical stool or blood specimen to a laboratory. Multipliers were defined as the inverse of each of these proportions. The burden of disease estimates were determined by multiplying the number of laboratory-confirmed cases ascertained via the nationwide laboratory surveys by these two multipliers.

The study indicates significant underreporting and under-diagnosis of the above mentioned pathogens from Ministry of Health laboratories, probably due to specimen preservation and transportation. Approximately only two in five persons with diarrhoea sought medical care. Burden of illness calculations revealed an estimated annual incidence (per 100,000) of 306, 123 and 130 for *Shigella*, *Salmonella* and *Brucella*, respectively. Although likely an underestimate of the real burden of disease, the study still provides baseline information of the burden of selected foodborne pathogens for one year in Jordan and serves as a model for other sentinel sites.

Moreover, study results have been used to advocate for improved specimen transportation, laboratory capacity and reporting systems as well as the establishment of sentinel site laboratory-based surveillance for *Salmonella* and *Shigella*. Future studies to determine the economic burden of other foodborne pathogens (e.g. *Campylobacter*, *E. coli*) have been recommended to advise policy-makers on cost-effectiveness of interventions and reallocation of resources.

Participants welcomed the Jordan Burden of Illness Study protocol as a very good starting point since it was feasible, effective and relatively low-cost; it also used a systematic flowchart to adjust for underreporting of data similar to the one outlined in Figure 1 of this document. The Jordan estimates, provided the country with valuable baseline prevalence information and demonstrated the extent of under-diagnosis and underreporting.

5.1.2 Recommendations for chapter 5.1 - Country protocols

After discussing the elements of country protocols in some detail the consultation participants recommended core data requirements, the detail of which are outlined in the subsequent section.
Recommendation VI

The following **core data requirements** are recommended for Foodborne Disease Burden studies at country level:

- A. Magnitude, distribution and health impact data
 - Number of clinical cases and number laboratory confirmed cases (obtained from available syndromic and laboratory surveillance systems and outbreak data)
 - Etiology
 - Number hospitalized (morbidity) and deaths (mortality)
 - Geographical distribution (i.e. urban and rural data)
 - Temporal distribution (i.e. seasonality)
 - Age and gender of cases
 - Population data
 - Total population
 - Population by age group and gender

The **representativeness** of the above epidemiological and laboratory surveillance data is an important consideration in interpreting the findings. An understanding of the **sensitivity and validity** of microbiological and chemical assay/test methods is critical and adjustments may need to be made in order to account for test accuracy.

Similarly, disease **underreporting studies** must be undertaken and appropriate correction factors calculated and applied. Underreporting estimates can be obtained through suites of studies assessing the proportion of the population with given symptom(s), identifying the proportion who seek health care and submit laboratory specimen, as well as the proportion of positive specimens and details/results of laboratory testing (Figure 1). However, such information will vary between studies and particularly between countries; correction factors therefore need to be country specific.

- B. Possible exposures and sources of pathogens and chemicals
 - Potential sources of chemical and pathogen exposure
 - National data on food consumption
 - Methods of food preparation
 - Biological measures of chemical and pathogen exposure (e.g. blood, urine)

The above data can be collected through cross-sectional studies of the population or through sentinel studies in rural and urban settings.
C. Associated diseases as indicators

- Epilepsy as indication of neurocysticercosis from *Taenia solium* infection
- Cholangiocarcinoma due to endemic liver fluke infections (*Opisthorchis viverrini*) where people commonly consume raw fish

Figure 3: Foodborne trematodiasis caused by the liver fluke *Opisthorchis viverrini*

Foodborne trematodiasis caused by the liver fluke *Opisthorchis viverrini* is highly prevalent in northeastern Thailand. The parasite life cycle involves fresh water *Bithynia* snail, Cyprinoid fish (A, inset) and reservoir/definitive hosts. People get infection by eating raw or under cooked fish (*Koi pla* – in Thai) (B) harboring infective metacercariae. The parasite then excysts in the duodenum, migrates to extrahepatic bile ducts and the liver. The fluke gets maturation in a month (C) and excretes eggs into feces. With poor hygienic latrine, especially those who live nearby natural water reservoirs (A), parasite eggs pass to the water where snail and fish can be infected. Man eats raw fish and completes the life cycle. The infection is associated with several chronic hepatobiliary diseases such as cholangitis, cholecystitis, gallstone, and the more life-threatening disease, cholangiocarcinoma (CCA) – the bile duct cancer (D). Thailand has been reported the highest incidence of CCA in the world. (Source: Figure prepared for WHO Consultation to Develop a Strategy to Estimate the Global Burden of Foodborne Diseases, September 25-27, 2006, Geneva – B. Sripa)
D. Presence of etiologic agents and/or disease in animals

- *Trichinella* found in meat, which is an indication of potential infections in humans
- Cysticercosis in pigs, indicating potential human infections
- Methylmercury in fish

5.2 Consultation, training & communication

5.2.1 Discussion

Given the generally sparse data on Burden of Foodborne Diseases, especially in developing countries, it was suggested that WHO may wish to undertake regional consultations in order to assist countries to identify those diseases and conditions that have the highest burden of illness. WHO regions would indicate if data are available to estimate the Burden of Foodborne Illnesses. If data are not available, the WHO region or country may estimate the burden based on data from other relevant regions. Regions or countries should not be discouraged from making estimates if data are limited. Initial estimates with limited data can assist policy development and may generate work to validate findings. There might be limited data on which to base burden of disease estimates for some agents considered to present the greatest risks, but even provocative estimates can initiate valuable research. An example of effective collaboration and communication at regional and country level leading to burden of disease estimates are the efforts in the WHO Region of the Americas (Textbox 5).

Textbox 5 - International cooperation on FBD burden of illness studies: A case study in the AMRO Region

International cooperation on foodborne diseases burden is not just a matter of bringing the right professionals together. Food safety systems are complex in nature, and because of this complexity strong partnerships are needed along the food continuum. These partnerships facilitate cooperation and information gathering for appropriate control of FBD. In the American Region (WHO-AMRO) FBD are subject to under-diagnosing, under-reporting and missing data. In the last 10 years the countries in AMRO totaling a population of approximately 853 million people reported less than 7,000 outbreaks to the Regional Information System on Foodborne Diseases Surveillance - SIRVETA. A likely cause of the lack of information is that the majority of the countries have basic surveillance systems (i.e. no formal or syndromic surveillance only) and in almost all reported outbreaks there was no formal laboratory-based reporting. Factors that may contribute to these issues include economic development, access to health care, public health infrastructure, political stability, and demographic features (rural/urban, literacy, age, religion, food preferences).

To counter this, in 2004, WHO/AMRO in alliance with the Public Health Agency of Canada (PHAC) and the Centers for Disease Control (CDC) from USA, have promoted a method of estimating the burden and impact of FBD in the population which involves conducting surveys of the population, laboratory and surveillance systems. The strategy used was to establish partnerships with the countries, stakeholders and WHO/AMRO by means of creating awareness using the regional courses of the WHO-GSS (Global SalmSurv), developing of teaching material (lectures and exercises), assessing the capacity of the country in developing a FBD burden of illness study using a country workshop and creating a national task force to implement the study. In the Americas, to date the burden and impact of FBD in the population has been documented in Cuba using sentinel sites, in Argentina in two pilot projects at local level (municipalities) and Costa Rica, Chile and Paraguay are ready to begin. It is projected that for 2013 (WHO’s medium term strategic plan of WHO/AMRO) at least 20 countries will have finished burden of illness studies in FBD.

1. Enrique Pérez Gutiérrez, Food Safety Officer, Health Surveillance and Disease Management Area, Veterinary Public Health Unit, Regional Office of the World Health Organization, Brazil.
To increase the countries’ capacity of assessing the Burden of Foodborne Disease, Burden of Illness should also be strengthened in the Global SalmSurv6 training curriculum. PAHO have developed a training exercise based on a study in Jordan to outline how these assessments are conducted in WHO Global SalmSurv courses.

5.2.2 Recommendations for chapter 5.2 – Consultation, training and communication

Participants felt that regional consultations in collaboration with the Food and Agriculture Organization (FAO) and other relevant international organizations are needed to facilitate the identification of diseases and conditions that are associated with the highest local burden of illness.

Recommendation VII

WHO should **collaborate closely with relevant partners, including the Food and Agriculture Organization (FAO) and others** to undertake regional consultations to discuss the regional specific profiles of foodborne syndromes and etiologic agent for future burden estimation.

A successful execution of this recommendation will require a communication strategy and training. It was suggested that it should include the following elements:

Recommendation VIII

Communication and training to execute burden of disease studies:

- WHO to communicate the importance of burden estimates for food safety policy development; this should be coordinated by WHO regional offices;
- WHO to facilitate training involving WHO staff and colleagues from countries experienced in this area of work;
- Emphasize burden of disease in the Global Salm-Surv training curriculum;
- WHO to disseminate information on burden of disease training by existing networks.

Participants suggested that countries wishing to conduct burden of disease studies should fulfill the following criteria:

6 World Health Organization Global Salm-Surv (GSS) is a global network of laboratories and individuals involved in surveillance, isolation, identification and antimicrobial resistance testing of *Salmonella*. It is part of WHO’s endeavours to strengthen the capacities of its Member States in the surveillance and control of major foodborne diseases and to contribute to the global effort of containment of antimicrobial resistance in foodborne pathogens. GSS was started in January 2000 to build capacity for laboratory-based surveillance of foodborne diseases. The programme is targeted at microbiologists and epidemiologists who work in public health, veterinary services, food-related services or environmental health. Originally GSS focussed on isolation and surveillance for *Salmonella*, but has now extended to other major foodborne pathogens. The programme is overseen by a steering committee comprising national or international agencies with an interest in foodborne diseases. For more information: http://www.who.int/salmsurv/en/
- Demonstrated political commitment to food safety and understanding the burden of illness due to contaminated food.
- Location in regions where the prevalence of foodborne disease is a recognized concern (i.e. confirmed cases, high risk dietary habits) and where burden of illness evidence is scant.
- Presence of an existing basic infrastructure to support the study (e.g. surveillance system in place, laboratory capacity).

The decision-making process regarding the implementation and specific country engagement/training should be democratic, pragmatic and transparent. It must be clear who makes decisions on implementation and specific country engagement and training, and if funding is channelled through WHO, governance issues must be addressed.

6. Strategic way forward

6.1 Burden of disease strategy and time frame for action

Participants discussed and agreed upon a strategic framework which WHO should employ to manage the process of arriving at burden of disease estimates as outlined in the "evidence map" (Table 2). The items shown in the three time periods indicate specific actions taken by investigators in the three syndromic disease categories agreed and recommended by the consultation.

Recommendation IX

A strategic framework indicating short, medium and longer term action points (Figure 4) should be used by WHO in order to deliver burden of disease estimates for the syndromes outlined in the "evidence map" (Table 2).
This framework has to be understood such that all activities will be directed and monitored by a specially established expert group, the Foodborne Disease Burden Epidemiology Reference Group (FERG - see next paragraph 6.2) and coordinated by WHO/FOS. In its initial meetings FERG will review and revise this plan. Where time frames are less clear, the areas have been merged.
6.2 The Foodborne Disease Burden Epidemiology Reference Group (FERG)

Participants endorsed the establishment of a group of experts which should convene regularly to advise WHO and oversee the work on foodborne disease burden as outlined above. This group may have various sub-groups or task forces for specific aspects of disease burden. This mechanism has been successfully used by WHO’s Child and Adolescent Health departments (Child Health Epidemiology Reference Group, CHERG) as well as the Malaria programme (MERG).

The core or oversight group should include:

- A chair with extensive and internationally renowned experience in both Foodborne Diseases and Epidemiology of Burden of Disease;
- Epidemiologists specializing in:
 - Microbiology/enteric diseases
 - Chemicals/Toxicology
 - Parasitic diseases
 - Zoonotic diseases
 - Source/cause attribution
- WHO Secretariat

The sub-groups/task forces may include further experts in the areas of:

- Microbiology, toxicology, parasitology and virology
- Burden of disease methodologies
- Disease modeling, statistics and geographic information systems
- Microbiological and chemical risk assessment, and source attribution
- Clinical medicine and nutrition
- Food protection policy and regulation
- Advocacy
- Communication and training
- Other experts as appropriate (e.g. economics, information management, ethics, public health law)

Recommendation X

WHO should establish a multi-disciplinary Foodborne Disease Burden Epidemiology Reference Group (FERG) to execute the recommendations of this consultation and oversee the process of burden of disease estimation.

Participants suggested that WHO approach donor agencies ranging from philanthropic organizations, aid agencies to UN partner organizations to fund this initiative. Donor agencies may also include universities, which could provide support services and human resources (both
faculty members and students). Academic institutions are also valuable for their infrastructure (including laboratory facilities), research experience and linkages to other potential funding sources, all of which can support sustainability. Regulatory agencies that develop standards for food safety quality could also be valuable collaborators in this initiative.

7. Conclusions

The group concluded that the estimation of the global burden of disease associated with foodborne causes is a multi-faceted activity that will require collaboration of a wide variety of different groups. Disease burden estimation should be tackled using a staged approach depending on the available evidence for different diseases and affected populations. The meeting concluded that estimation of global estimates of foodborne disease burden were vital to establish the baseline and set targets for improvement.

7.1 Outputs of the consultation

During the consultation, the following products were developed:

- An overall framework for assimilating existing information (i.e. the "evidence map") on the burden of illness developed along themes of (i) acute infectious diseases, (ii) chronic manifestations of infectious diseases and (iii) acute and chronic non-infectious illness (e.g. food borne chemical exposure); this framework is summarized in Table 2.

- A strategic framework for burden of disease estimation highlighting the actions foreseen to take place in the short-, medium- and longer-term of this initiative Figure 4.

- Elements of a standard protocol/manual for conducting burden of illness studies in countries to obtain estimates. Core data requirements to be included in the country protocols related to the following areas (cf. Recommendation VI):
 - Magnitude, distribution and health impact data
 - Possible exposures and sources of pathogens and chemicals
 - Associated diseases as indicators
 - Presence of etiologic agents and/or disease in domestic animals or wildlife consumed for food

In addition, the participants agreed on:

- A Consultation Joint Statement of Support which forms the Preamble of this meeting report. This declaration expresses support for this global initiative and advocates for continued WHO leadership in taking this work forward. In addition, the statement is to be sent as a formal communication by the consultation Chair to WHO senior management, including the WHO Director-General, Assistant Director-Generals and Director FOS.
7.2 Summary of Recommendations:

Table 3 gives an overview of the recommendations articulated during the consultation.

Table 3: Table of recommendations

<table>
<thead>
<tr>
<th>#</th>
<th>Topic</th>
<th>Recommendation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Recommendations on methodological approaches and measures for foodborne disease burden estimation.</td>
<td>Combined syndromic and etiologic agent-specific approach to be applied, followed by an attribution of the proportion of DALYs that is likely to be foodborne.</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>"Evidence map" (cf. Table 2) to be used as draft for FERG.</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Emphasis on chemical and parasitic causes of foodborne diseases.</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>The Global Burden of Disease (GBD) methodology to be employed; impact of foodborne diseases to be expressed in DALYs.</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>"Single most likely value" for non-technical audiences;</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Point estimates of the burden with uncertainty distribution in technical publications.</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>Recommendations on country protocols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>VI. Core data requirements</td>
<td>A. Magnitude, distribution and health impact data</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>B. Possible exposures and sources of pathogens and chemicals</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>C. Associated diseases as indicators</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>D. Presence of etiologic agents and/or disease in domestic animals or wildlife consumed for food</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>VII.-VIII. Consultation, training and communication</td>
<td>WHO to collaborate closely with the Food and Agriculture Organization and others to undertake regional consultations.</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>WHO to communicate the importance of this issue of food safety policy development.</td>
<td>26</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Training to involve WHO staff plus colleagues from countries experienced in this area of work.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Burden of disease in the Global Salm-Surv training curriculum to be emphasized;</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Dissemination of information on burden of disease training by existing networks.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Strategic way forward</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>IX. Burden of disease strategy and time frame for action</td>
<td>Investigators to take actions in three syndromic disease categories according to a time-bound strategy outlined in figure 4.</td>
<td>27</td>
</tr>
<tr>
<td>19</td>
<td>X. The Foodborne Disease Burden Epidemiology Reference Group (FERG)</td>
<td>WHO to establish a multi-disciplinary FERG to execute the recommendations of the consultation and oversee the process of BOD estimation.</td>
<td>29</td>
</tr>
</tbody>
</table>

The main thrust of taking the agenda of estimating the global Burden of Foodborne Diseases initiative forward will rest with the strategic leadership from WHO/FOS and the Foodborne Disease Burden Epidemiology Reference Group (FERG) which will provide WHO with expert advice and burden of disease estimates for consideration. FERG should proceed according to the action points outlined in the time-bound strategy for burden of disease estimation shown in Figure 4. WHO will approach funding agencies to execute the strategy.
It was recommended to extend the Burden of Foodborne Disease initiative to a **broad spectrum of diseases commonly transmitted through food and from a variety of causes.** It should initially focus on microbial, parasitic, zoonotic and chemical contamination of food. Subsequently other aspects (e.g. burden associated related to nutritional aspects or issues such as avian influenza, food allergies etc.) should be considered.

Participants agreed that a **combination of syndromic and etiological agent specific approaches** was desirable for burden of disease estimations. The **starting point should be overall enteric disease burden** studies adjusted for underreporting, then estimating pathogen-specific burden and subsequently attributing the burden to foodborne, waterborne and other modes of transmission. A **special emphasis of the Burden of Foodborne Diseases Initiative should be placed on assessing the chemical and parasitic causes of foodborne disease burden,** as only little work has been done in this field up to now.

It was also recommended that the Burden of Foodborne Diseases estimates should be **measured in DALYs** (Disability-Adjusted Life Years). Despite some limitations DALYs are useful as initial common currency for BOD estimates and form a basis for more detailed cost estimates related to the economic impact. **Single point estimates** were recommended for **non-technical audiences**, whereas **point estimates with uncertainty distribution** were recommended for technical publications.

Even with limited data at their disposal, **countries should be encouraged to estimate the foodborne diseases burden.** Beyond assisting policy development, challenging estimates can catalyze valuable research. For a more in depth analysis on a national level which WHO member states are urged to undertake, consultation participants identified a number of country protocols as useful templates (such as the Jordan Burden of Illness Study Protocol) and suggested key elements of a standard protocol/manual for conducting burden of illness studies. The WHO **Regional Food Safety Advisers should assist countries in conducting these studies and identify foodborne disease issues specific to regions** and sub-populations (e.g. children).

In order to increase country governments' commitment to assessing the Burden of Foodborne Diseases, **WHO is to provide information that demonstrates the importance of specific projects and direct benefits.** Moreover, **countries are to be supported through expanded training opportunities** (offered e.g. through GSS activities) so as to enhance their epidemiological capacity in the field and their preparedness of implementing burden studies.

The **Joint Statement of Support** from the consultation participants demonstrates the appreciation as well as the need for this WHO initiative. WHO is now working on the implementation of the strategy and recommendations.
8. References

9. Attachments and Appendices

Appendix 1: List of participants

Fred Angulo
Chief, FoodNet/NARMS
Enteric Diseases Epidemiology Branch
Division of Foodborne, Bacterial and Mycotic Diseases
National Center for Zoonoses, Vectorborne and Enteric Diseases
1600 Clifton Road MSD63
Atlanta, GA 30333, USA
Tel: +1 404 639 3315
Fax: +1 404 639 3535
E-mail: fja0@cdc.gov

Beniyamin Cherkasskiy
Central Research Institute of Epidemiology
3-A Novogireevskaya Str
111123 Moscow, Russian Federation
E-mail: zoonoz@proc.ru

Wan Mansor bin Hamzah
Principal Assistant Director Disease Control Division (Communicable)
Department of Public Health
Ministry of Health Malaysia
Block E10, Level 3, Parcel E
62590 Putrajaya, Malaysia
Tel: +60 8883-4504
Fax: +60 8888-6270
Email: wan_mansor@moh.gov.my
drwemaso2@yahoo.com

Tom Chiller
FoodNet
Enteric Diseases Epidemiology Branch
Centers for Disease Control and Prevention
1600 Clifton Road MSD63
Atlanta, GA 30333, USA
E-mail: tnc3@cdc.gov

Sarah Cleaveland
Centre for Tropical Veterinary Medicine
University of Edinburgh
Easter Bush Veterinary Centre
Roslin Midlothian
Scotland EH25 9RG, UK
Fax: +44 131 650 6289
E-mail: sarah.cleaveland@ed.ac.uk

Norma Binsztein
Head of the Bacteriology Department
Instituto Malbran
Avenida Velez Sarsfield 563
1281 Buenos Aires, Argentina
Tel: +54 11 4 303 1801
Fax: +54 11 4 303 2812 or +54 11 4 303 1801
E-mail: nbinsztein@anlis.gov.ar; nbinsztein@fibertel.com.ar

Kathryn Doré
Head, Surveillance Section
Foodborne, Waterborne, and Zoonotic Infections Division
Public Health Agency of Canada
255 Woodlawn Road West, Unit 120
Guelph, Ontario
CANADA N1H 8J1
Tel.: 519-826-2213
Fax.: 519-826-2244
Email: kathryn_dore@phac-aspc.gc.ca
Ingrid Filliol
Centre National de Référence des E. coli et Shigella
Unité de Biodiversité des Bactéries Pathogènes émergentes
Institut Pasteur
28 rue du Docteur Roux
75724 Paris cedex 15, France
Tel: +33 1 45 68 83 44
Fax: +33 1 45 68 88 37
E-mail: ifilliol@pasteur.fr

Anthony Fiore,
Medical Epidemiologist, Division of Viral Hepatitis
National Center for HIV/AIDS, Viral Hepatitis, STD & TB Prevention (proposed)
Centers for Disease Control and Prevention
Mailstop G37
Atlanta, GA 30333
Tel: +1 404.718.8500
Fax: +1 404.718.8585
E-mail: abf4@cdc.gov

Marie Christine Fonkoua
Centre Pasteur du Cameroun
BP 1274 Yaoundé, Cameroon
Tel: +237 223 18 03
Fax: +237 223 15 64
E-mail: fonkoua@pasteur-yaounde.org

Neyla Gargouri Darwaza
Head of Surveillance Department
Disease Control Directorate
Ministry of Health
P.O. Box 86
Amman, Jordan
Tel: +962 6 5607 144
Fax: +962 6 5686965
E-mail: neylagd@yahoo.com

Herman J Gibb
President, Sciences International, Inc.
1800 Diagonal Road, Suite 500
Alexandria, VA 22314, USA
Tel: +1 703 684-0123
Fax: +1 703 684 2223
E-mail: hgibb@sciences.com

Kim Y. Green,
Senior Investigator
Laboratory of Infectious Diseases
National Institute of Allergy and Infectious Diseases
National Institutes of Health
Department of Health and Human Services
Building 50, Room 6318
50 South Drive-MSC8007
Bethesda, Maryland 20892, USA
Tel: +1 301 594-1665
Fax: +1 301 480-5031
E-mail: kgreen@niaid.nih.gov

Suzanne C Ho
Professor of Community & Family Medicine
Deputy Director
Centre for Emerging Infectious Diseases
School of Public Health
Chinese University of Hong Kong
Shatin, New Territories
Hong Kong, China
E-mail: suzanneho@cuhk.edu.hk
Lisa Indar
Programme Manager
FoodBorne Disease and Preventative Control
Caribbean Epidemiology Centre (CAREC)
16-18 Jamaica Boulevard
Federation Park
P.O Box 164, Port of Spain
Republic of Trinidad and Tobago
Tel: +868 6224261
Fax: +868 6222792
E-mail: indarlis@carec.paho.org

Tim F Jones
Deputy State Epidemiologist
Communicable and Environmental Disease Services
Tennessee Department of Health
4th Fl., Cordell Hull Bldg.
425 5th Ave. N.
Nashville, TN 37247, USA
E-mail: Tim.F.Jones@state.tn.us

Lidia Kaftyreva
Institut Pasteur
Ulista Mira 14
197101 Saint Petersburg
Russian Federation
E-mail: pasteur@LK14290.spb.edu

David Kay
Professor of Environment and Health
CREH, University of Wales
Lampeter
Ceredigion SA48 7ED
Wales, UK
Tel: +44 1970 622 634
Fax: +44 1570 423 565
E-mail: dvk@aber.ac.uk

Lai King Ng
National Microbiology Laboratory
Bacteriology and Enteric Diseases Program
Public Health Agency of Canada
1015 Arlington St., Rm H1400
Winnipeg, MB R3E 3R2 Canada
Tel: +1 204 789 2123
Fax: +1 204 789 5012
E-mail: lai_king.ng@phac-aspc.gc.ca

Martyn Kirk
Department of Health and Ageing
GPO Box 9848
MDP 15
Canberra 2601, ACT, Australia
Tel: +61 2 6289 9010
Fax: +61 2 6289 5100
E-mail: martyn.kirk@health.gov.au

Judy S. LaKind
President
LaKind Associates, LLC
106 Oakdale Avenue
Catonsville, MD 21228
USA
Tel: +1 410 788 8639
Fax: +1 410 788 1971
E-mail: lakindassoc@comcast.net

Claudio Lanata
Instituto de Investigación Nutricional
La Molina, Apartado Postal 180191
Miraflorres
Lima 18, Peru
E-mail: clanata@iin.sld.pe
Ran Lu
Chinese Center for Disease Control and Prevention
Add: 27, Nanwei Road,
Xuanwu District,
Beijing 100050, P.R. China
Tel: +86 10 63025413
Fax: +86 10 63025413
E-mail: ranlu66@yahoo.com

Donald R. Mattison
Senior Advisor to the Directors of
NICHD and CRMC
Branch Chief, Obstetric and Pediatric Pharmacology Branch
National Institutes of Health, HHS
6100 Executive Blvd, RM 4A01 MSC 7510
Bethesda MD 20892-7510, USA
Tel: +1 301 451 3823
Fax: +1 301 480-2897
E-mail: mattisod@mail.nih.gov

T. Nikki Maxwell
FoodNet
Enteric Diseases Epidemiology Branch
National Center for Zoonotic, Vectorborne, and Enteric Diseases
1600 Clifton Road MSD63
Atlanta, GA 30333, USA
Tel: +1 404 639 3412
Fax: +1 404 639 3535
E-mail: ddq6@cdc.gov

Jennie Musto
Epidemiologist, Communicable Diseases Branch,
New South Wales Department of Health,
GPO Box 9848
Sydney NSW 2001, Australia
E-mail: JMUST@doh.health.nsw.gov.au

George Nasinyama
Head of the Department of Veterinary Public Health & Preventive Medicine
Makerere University,
P.O. Box 7062,
Kampala, Uganda
E-mail: nasinyama@vetmed.mak.ac.ug

Sarah O’Brien
Professor of Health Sciences and Epidemiology
University of Manchester,
Division of Medicine & Neurosciences Clinical Sciences Building
Hope Hospital, Stott Lane
Salford M6 8HD, UK
Tel: 0161 206 1883
E-mail: Sarah.O’Brien@manchester.ac.uk

Katarzyna Pancer
National Institute of Hygiene
24, Chocimska St.
00-791 Warsaw, Poland
Tel: +48 22 54 21 263
Fax: +48 22 54 21 307
E-mail: kpancer@pzh.gov.pl

Kreingsak Poonsuk
Centre for Antimicrobial Resistance Monitoring in Foodborne Pathogens
Faculty of Veterinary Science
Chulalongkorn University
Henri-Dunant Street
10330 Bangkok, Thailand
E-mail: Kriengsak.P@Chula.ac.th
André Ravel
Epidemiologist, C-EnterNet Surveillance Project
Laboratory for Foodborne Zoonoses
Public Health Agency of Canada
3200 Sicotte, Box 5000
St-Hyacinthe, Quebec
CANADA J2S 7C6
Tel.: 450-773-8521 Ext: 18490
Fax: 450-778-8120
E-mail: andre_ravel@phac-aspc.gc.ca

 Guillermo M. Ruiz-Palacios
Chief, Department of the Infectious Diseases
Instituto Nacional de Ciencias Medicas y Nutricion
Vasco de Quiroga Number 15
Col. Seccion XVI
Tlalpan
Mexico, D.F.
E-mail: gmrps@servidor.unam.mx

Elaine Scallan
FoodNet
Enteric Diseases Epidemiology Branch
Centers for Disease Control and Prevention
1600 Clifton Road MSD63
Atlanta, GA 30333, USA
E-mail: bmd9@cdc.gov

Banchob Sripa
Department of Pathology, Faculty of Medicine
Khon Kaen University
123 Mittrarab Road
Khon Kaen 40002, Thailand
Tel/Fax: +66 43 348388
E-mail: banchob@kku.ac.th

Paul Torgerson
Institut für Parasitologie
Winterhurerstrasse 266a
CH-8057 Zürich, Switzerland
Tel: +41 44 635 8535
Fax: +41 44 635 8907
E-mail: paul.torgerson@access.unizh.ch

Hajime Toyofuku
National Institute of Health Sciences
Division of Safety Information on Drug, Food, and Chemicals
1-18-1 Kamiyoga, Setagaya-Ku, Tokyo 158-8501, JAPAN
E-mail: toyofuku@nihs.go.jp

Rolaf Van Leeuwen
Centre for Substances and Integrated Risk Assessment
National Institute for Public Health and the Environment (RIVM)
PO Box 1
3720 BA Bilthoven
The Netherlands
Fax: +31 30 274 2971
E-mail: fxr.van.leeuwen@rivm.nl

Linda Verhoef
RIVM
Laboratory of Water and Food Microbiology
P.O. Box 1 NL-3720 BA
Bilthoven, The Netherlands
E-mail: Linda.Verhoef@rivm.nl

Elena Vojtenkova
Institut Pasteur
Ulista Mira 14
197101 Saint Petersburg
Russian Federation
Fax: +7 812 232 9217
Marc-Alain Widdowson
Senior Service Fellow
Respiratory and Enteric Virus Branch
Centers for Disease Control Mailstop A34
1600 Clifton Road, NE
Atlanta, GA, 30333
USA
E-mail: zux5@cdc.gov

Arve Lee Willingham
WHO/FAO Collaborating Center for Parasitic Zoonoses
Royal Veterinary and Agricultural University
Dyrlægevej 100
1870 Frederiksberg C, Denmark
E-mail: awi@kvl.dk

WHO - Secretariat

HQ

Peter Braam
Food Safety, Zoonoses and Foodborne Diseases
World Health Organization
Avenue Appia
Geneva, Switzerland
Tel: +41 22 791 3882
Fax: +41 22 791 4807
E-mail: braamp@who.int

Claudia Stein
Food Safety, Zoonoses and Foodborne Diseases
World Health Organization
Avenue Appia
Geneva, Switzerland
Tel: +41 22 791 3234
Fax: +41 22 791 4807
E-mail: steinc@who.int

Johanna Vesterinen-Slotte
Food Safety, Zoonoses and Foodborne Diseases
World Health Organization
Avenue Appia
Geneva, Switzerland
Fax: +41 22 791 4807
E-mail: slottej@who.int

Cynthia Boschi-Pinto
Child and Adolescent Health
World Health Organization
Avenue Appia
Geneva, Switzerland
Tel: +41 22 791 3453
E-mail: pintoc@who.int

Colin Mathers
Evidence and Information for Policy
World Health Organization
Avenue Appia
Geneva, Switzerland
Tel: +41 22 791 4529
E-mail: mathersc@who.int

François Meslin
Food Safety, Zoonoses and Foodborne Diseases
World Health Organization
Avenue Appia
Geneva, Switzerland
Tel: +41 22 791 2575
Fax: +41 22 791 4807
E-mail: meslinf@who.int

Daniel Lavanchy
Epidemic and Pandemic Alert and Response
World Health Organization
Avenue Appia
Geneva, Switzerland
Tel: +41 22 791 2656
E-mail: lavanchyd@who.int

Claudia Stein
Food Safety, Zoonoses and Foodborne Diseases
World Health Organization
Avenue Appia
Geneva, Switzerland
Tel: +41 22 791 3234
Fax: +41 22 791 4807
E-mail: steinc@who.int
Anthony Burton
Immunization, Vaccines and Biologicals
World Health Organization
Avenue Appia
Geneva, Switzerland
Tel: +41 22 791 4732
E-mail: burtona@who.int

Lorenzo Savioli
Neglected Tropical Diseases
World Health Organization
Avenue Appia
Geneva, Switzerland
Tel: +41 22 791 2664
E-mail: savioll@who.int

Duncan Steele
Immunization, Vaccines and Biologicals
World Health Organization
Avenue Appia
Geneva, Switzerland
Tel: +41 22 791 3752
E-mail: steeled@who.int

Angelika Tritscher
Programme on Chemical Safety
World Health Organization
Avenue Appia
Geneva, Switzerland
Tel: +41 22 791 3569
E-mail: tritschera@who.int

Claire-Lise Chaignat
Neglected Tropical Diseases
World Health Organization
Avenue Appia
Geneva, Switzerland
Tel: +41 22 791 2095
E-mail: chaignatc@who.int

Jamie Bartram
Water, Sanitation and Health
World Health Organization
Avenue Appia
Geneva, Switzerland
Tel: +41 22 791 3537
E-mail: bartramj@who.int

Dirk Engels
Neglected Tropical Diseases
World Health Organization
Avenue Appia
Geneva, Switzerland
Tel: +41 22 791 3824
E-mail: engelsd@who.int

PAHO

Enrique Perez
Chief, Technical Cooperation
Pan American Institute for Food
Regional Office of the World Health Organization
Brazil
Tel: +55 21 3661 9000
Fax: +55 21 3661 9001
E-mail: perezenr@fos.ops-oms.org

Albis Gabrielli
Neglected Tropical Diseases
World Health Organization
Avenue Appia
Geneva, Switzerland
Tel: +41 22 791 1876
E-mail: gabriellia@who.int
Appendix 2: Meeting agenda

WHO Consultation
To Develop a Strategy to Estimate
the Global Burden of Foodborne Diseases
Salle B, Main Building

AGENDA

Monday, 25 September

8:30-9:00 Registration

9:00-9:15 Welcome by the Assistant Director-General
 Dr David Heymann, ADG/CDS a.i.

9:15-9:20 Election of Chair & Rapporteur (FOS staff)

9:20-9:45 Introduction (Claudia Stein)
 • Purpose & objectives of the meeting
 • Expected outcomes & products
 • The Global Burden of Foodborne Diseases -
 summary of approaches to date

SESSION 1 MAPPING THE GLOBAL BURDEN OF FOODBORNE
DISEASES

9:40-10:10 The Global Burden of Disease project at WHO
 Rationale, methods & status (Colin Mathers)
 Discussion

10:10-10:35 International Collaboration on Enteric Burden of Illness studies
 The network, methods and results to date (Elaine Scallan)
 Discussion
10:35-11:00 Coffee break

11:00-11:35 The Global Burden of Shigella, Typhoid and Salmonella
Rationale, methods & status (Jennie Musto)
Discussion

11:35-12:15 The Global Burden of Diarrhoeal Diseases in children
Rationale, methods & status (Claudio Lanata)
Discussion

12:15-13:30 Lunch

13:30-14:10 The Global Burden of unsafe water, sanitation & hygiene
Rationale, methods & status (David Kay)
Discussion

14:10-14:50 Foodborne neglected tropical diseases & zoonoses
Rationale, methods & status (PTorgerson/S Cleaveland/F Meslin)
Discussion

14:50-15:30 The Burden of Foodborne Chemicals
Overview (Herman Gibb)
Discussion

15:30-15:50 Coffee break

SESSION 2

TOWARDS A GLOBAL STRATEGY FOR FOODBORNE DISEASE BURDEN ESTIMATION

15:50-16:00 Instructions for Group Work (Claudia Stein)

16:00-18:00 Group work 1

Tuesday, 26 September

8:30-9:45 Reports from Working Groups 1
Presentation from WGs & Discussion

9:45-10:30 Burden of Foodborne Diseases Strategy - plenary
Charting the "evidence map", identifying collaborators and next steps

10:30-11:00 Coffee break

SESSION 3

NATIONAL BURDEN OF FOODBORNE DISEASE PROTOCOLS

11:00-11:40 National Burden of Disease studies - country protocols

NBD manual & World Health Surveys (Colin Mathers)

Discussion

11:40-12:00 **WHO Strategy on Burden of Foodborne Diseases Studies**

(Martyn Kirk)

12:00-12:40 National Burden of Foodborne Diseases studies - current country protocols

(Elaine Scallan)

Discussion

12:40-14:00 Lunch

14:00-14:35 National Burden of Foodborne Diseases studies -
The Jordan Burden of Illness Study

(Neyla Gargouri Darwaza)

Discussion

14:35-15:10 National Burden of Disease study - chemical causes

(Rolaf van Leeuwen)

Discussion

15:10-15:20 National Burden of Foodborne Disease studies and a WHO Strategy

Introduction to group work 2 (Claudia Stein)

15:20-15:45 Coffee break

15:45-18:00 Group work 2

Wednesday, 27 September

8:30-10:00 Reports from Working Groups 2

Presentation from WGs
10:00-10:30 Coffee break

10:30-11:00 Burden of Foodborne Diseases strategy & country protocols

Discussion of WG results
Strategic way forward & action points
Agreement on country protocols

SESSION 4 ACTION PLAN ON FOODBORNE DISEASE STRATEGY AND PROTOCOLS

11:00-11:45 Wrap up - Burden of Foodborne Disease Strategy

Summary of all sessions 1-3 (Secretariat)
Next steps (report, core burden reference group, etc)

11:45-13:00 Lunch

SUPPLEMENT WHO GLOBAL SALM-SURV REGIONAL SITES WORKSHOP

FOR SDE/FOS STAFF AND EXTERNAL PARTICIPANTS ONLY

13:00-18:00 GSS workshops

Variable coffee breaks for groups